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Abstract. This paper proposes a practical way for circumscription.  The 
meanings of the practical way are 1) a goal-oriented prover is given for solving 
circumscription problems.  A feature of the prover is that the priority and the 
variable predicates are suggested so as to prove the intended results whereas 
usual methods prove queries by giving the priority and the variable predicates 
in advance.  This prover is an application of the one for DNF formulae in the 
object system T and is the set of meta-rules of a meta-predicate which 
represents a clause.  Circumscription formulae are represented as the meta-
rules.  The SLD-resolution procedures for the meta-system are given and a 
circumscription problem is solved by showing an empty node in the SLD-tree if 
semi-decidable.  2) Based on the prover, formulae satisfying circumscription 
formulae are given for predicates with functions.  Practically circumscription is 
applied to prove the negation of a predicate p.  For the formulae given above to 
be false, the condition is needed that T made p false is consistent with T.  3) 
Variable predicates are generalized so as to prove T made p false.  By the 
generalization it is shown that circumscription problems are practically solved 
by giving a model to show the consistency for the undecidable cases.  By 
encapsulating the consistency check as an oracle a practical logic programming 
for circumscription is given for queries without universal quantifiers.  The 
oracle for queries with universal quantifiers is also given. 

1    Introduction 

Nonmonotonic logics are important for inferences based on defeasible assumptions in 
AI [1].  Major nonmonotonic logics are circumscription [7], default logic, and 
autoepistemic logic.  These logics deal with the concepts of plausibility and normality 
and the proof systems are complicated.  As seen in the sequent calculi for 
nonmonotonic logics these proof systems include both the proof and disproof 
procedures [3, 5].  Default and autoepistemic logics need the disproof-procedures to 
generate the extensions and the expansions, respectively.  Regarding the provers 
circumscription is attractive from the following two reasons.  One is that in 
propositional case the complexity of circumscription is Пp

2 of polynomial hierarchy 
whereas that of autoepistemic logic is Пp

3-complete for skeptical reasoning [4].  The 
other is that circumscription is formalized in classical logic by a formula in second-
order logic, and resolution procedures can be applied to the provers.  The proof-
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systems of circumscription are usually based on minimal modes, and disproof-
procedures are needed to generate minimal models.  In the tableau calculus it is 
needed to show that the branches which are not closed are not minimal models by 
showing that there are predicates not proved in the branches [8].  For a given theory T 
and a query the MILO-resolution needs to generate a tree which shows that T and the 
query are consistent, and to prove all the leaves in T [10].     
  There are several restrictions in these provers, 1) The selection priority of the 
predicates circumscribed and the variable predicates must be given a priori [6].  2) 
There are no procedures for the cases where the predicates include functions, i.e., the 
ones undecidable.  Originally nonmonotonic systems are required to realize the 
concepts of plausibility and normality needed.  The priority and the variable 
predicates must be chosen such that the requirements are satisfied.  Therefore these 
vary accordingly to the queries.  In this meaning a goal-oriented prover is practically 
needed such that both the circumscribed (the priority) and the variable predicates can 
be suggested in the processes of proofs.  Regarding 2) the circumscription formula 
includes at least П0

1 formulas of arithmetical hierarchy, and the system is 
undecidable.  Therefore semi-decidable provers are impossible.  However if the 
undecidability is confined it is possible to make provers semi-decidable except the 
confined undecidable procedures.  This method gives a practical way to solve 
problems for circumscription.  For example if the undecidability is due to the proof of 
the consistency then it can be resolved practically by giving a model though not 
formally. 
  This paper proposes a goal-oriented prover which solve practically the above two 
problems.  The proof-system is an application of that for the set of formulae in the 
disjunctive normal forms (DNF) [2].  The system is the set of Horn clauses called 
meta-rules of a second-order predicate Prov called a meta-predicate which means a 
clause.  The system is called a meta-system, and is generated from the DNF formulae 
in the object system T.  SLD-resolution procedures are given for the meta-system, and 
the search space is an SLD-tree.  The meta-system is sound and complete in the 
meaning that if Prov with the empty value is proved in the meta-system then the 
object system is inconsistent, and vice versa.  Let T be the set of clauses.  For a given 
predicate p the circumscription formula of p is that α←p is proved from p←α and 
T(p/α), where T(p/α) is given by substituting α for p in T.  α is called a circumscribing 
formula of p.  The circumscription formula is a DNF formula, since the body consists 
of p←α and T(p/α), where T(p/α) is a conjunction of clauses due to the fact that T is 
the set of clauses.  Therefore the circumscription formula is a meta-rule in the meta-
system and is called the circumscription meta-rule.  Generally (T+circumscription) is 
undecidable and so is the meta-system.   
  In Sec.2, the proof system is formulated.  In Sec.3, based on the prover, 
circumscribing formulae are given without variable predicates for the set of typical 
clauses of predicates with functions.  Practically circumscription is applied to prove 
the negation of p.  For the formulae given above to be false, the condition must be 
satisfied that T made p false is consistent with T.  When the condition is satisfied, 
variable predicates are generalized so as to prove T made p false and are called 
generalized variable-predicates.  Generally the consistency check is undecidable.  By 
encapsulating the consistency check as an oracle, a practical logic programming for 
circumscription is given for queries without universal quantifiers, i.e., circumscription 
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problems are practically solved by giving a model to show the consistency.  The 
oracle for queries with universal quantifiers is also given. 

 2    Formalization 

Let (Γ) be a set of formulas of first-order logic.  Without loss of generality it is 
assumed that predicates are one variable except the special predicate =, the equality.  
Assuming Skolem’s functions and the Henkin theory of (Γ), let Γ be the matrix of (Γ) 
represented as the set of DNF formulae.  In the following each upper case letter, U, W, 
X, Y or Z, takes the values of disjunctions, conjunctions of positive predicates, or the 
empty symbol □, and each lower case letter except x and y represents a predicate in 
the formula the upper case letter denotes.  x or y is for the variable of (Γ).  X and Y 
are the variables of the meta-system called M whose values are the conjunctions and 
the disjunctions of the Herbrand base of Γ, respectively.  Now introduce a meta-
predicate Prov(X;Y) which means Y←X, where X and Y are a conjunction and a 
disjunction of positive predicates, respectively.  When Y={Y1,Y2} and X=X1&X2, 
Prov(X;Y) is also represented as Prov(X1,X2;Y1,Y2), where & is the conjunction 
sign and {} means the disjunction of the elements.  The meta-system for to Γ is 
defined as follows. 
 
Definition 1  Let Γ be the set of the formulas, (Z←W)←(Z1←W1)&…&(Zm←Wm) 
and (Z’←W’)←.  The meta-system M is the set of meta-rules as follows. 
  
M0    Prov(X,X1;Y1,Y) ← Prov(X,X1,X1;Y1,Y1,Y),  
M1    Prov(X,u;u,Y) ←, 
M2    Prov(X;Y) ← Prov(X;u1,Y)&…&Prov(X;uj,Y)&Prov(X,U;Y), U=u1&…&uj, 
M3    Prov(X,W;Z,Y) ← Prov(X,W,W1;Z1, Z,Y)&…&Prov(X,W,Wm;Zm, Z,Y), 
M4    Prov(X,W’;Z’,Y) ←,  
 
where u, u1,…, and uj are predicates (x is not shown explicitly).  The left and the 
right formulae of a meta-rule are called the head and the body, respectively.  When 
the negation of a query is added to Γ, the query is represented as a conjunction in the 
normal form and the corresponding meta-rule is M3 with W and Z empty.  The body 
of a meta-rule without the head is called a goal clause for simplicity.  It is noted that 
M is a proving system without the negation symbol ~. 
 
Definition 2 (The SLD-tree)  The root node is Prov(□; □).  Each node is labeled a 
conjunction of Prov.  Let Prov(X1;Y1) be the left most of the conjunction labeled to a 
node.  Then the conjunctions below the node are generated as follows.  In the 
following ‘X1 (Y1) includes W (Z)’ means that every predicate in W (Z) matches 
with a predicate in X1 (Y1) with the most general unifier.  X-X1 means the formula 
removed atoms in X1 from X.   
 
P1: If Prov(X1;Y1) matches with the head of M1or M4 then remove it. 
P2: If X1 and Y1 include W and Z in M3, respectively, then remove it and add  
      Prov(X1,Wi;Zi,Y1), (1≤i≤m). 
P3: If Y1 includes Z in M3 and does not include any ui, (1≤i≤j), where u1&…&uj= 
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      W-X1, then remove Prov(X1;Y1) and add Prov(X1;ui,Y1), (1≤i≤j), and  
Prov(X1,W,Wi;Zi,Y1), (1≤i≤m). 

P4: If Y1 includes Z’ in M4 and does not include any ui, (1≤i≤j), where u1&…&uj= 
      W’-X1, then remove Prov(X1;Y1) and add Prov(X1;ui,Y1), (1≤i≤j). 
 
  The generated meta-predicates obtained by applying the above procedures 
repeatedly are called the descendants of Prov(X1;Y1).  It is noted that for P2, P3, or 
P4 to be applied to Prov(X1;Y1), Y1 must include  Z or Z’.  The branch whose leaf is 
the empty node is called a success-branch.  Theorems 3 and 4 have been proved in [2].   
 
Theorem 3  If there is the empty node in the SLD-tree for M then Γ is inconsistent 
and vice versa. 
 
Theorem 4  If the SLD-tree includes the empty node then there is a success-branch 
such that any meta-predicate in  a node doesn’t appear in the descendants, i.e., there 
are no loops such that a meta-predicate  is expanded repeatedly. 
 
Example 5  To show the existence of x for p(x) from {p(a),p(b)}, where a and b are 
constant.  Γ is {p(a),p(b)}← and the negation of the query is ←p(x).  Corresponding 
meta-rules and the goal clause for Prov(□; □) are, respectively,  
   
Prov(X; p(a),p(b),Y) ←,                                                                                              (1)  
 
Prov(X;Y) ← Prov(X;p(x),Y),                                                                                    (2) 
 
                  ← Prov(□; □),                                                                                            (3) 
             
where the other meta-rules, M0, M1, and M2 are omitted (so are hereafter).  (2) is the 
meta-rule corresponding to the negation of the query in Γ.  The SLD-tree is 
 
Prov(□;□) - Prov(□;p(x)) - Prov(□;p(x),p(x’)) - □. 
 
The second is obtained by matching Prov(□;□) with the head of (2) and P2.  The third 
is given by matching Prov(□;p(x)) with the head of (2) and P2.  By Theorem 4, x and 
x’ are different.  The last is shown by (1) and P1 with x=a and x’=b.  
 
  Let T be the set of clauses.  The formulation of circumscription is given in second-
order logic with the universal quantifier.  The universal quantifiers in first and 
second-order logics satisfy the same inference rules [9] and a circumscription formula 
is a DNF formula in T.  Therefore the meta-rule for circumscription is in the form of 
M3 and is given as follows. 
 
C1  Prov(X,p(x);α(x),Y) ← Prov(X,p(x),α(c);p(c),α(x),Y)&T(p/α,x/c’:X,p(x);α(x),Y), 
 
where c and c’ are constant symbols not appearing in T and T(p/α,x/c’:X,p(x); α(x),Y) 
is the conjunction of meta-predicates for clauses in T replaced p and x with α and c’, 
respectively.  For example when T is the set of q(x)←p(x) and r(x)←s(a), 
 
 T(p/α,x/c’:X,p(x);α(x),Y)≡Prov(X,p(x),α(c’);q(c’),α(x),Y) 
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& Prov(X,p(x),s(a);r(c’),α(x),Y).   
 
However the second meta-predicate is removed since it is true in M. 

The other meta-rules needed for (T+circumscription) relate to the equality (=).  
 
C2  Prov(X,X1(x);Y1(x),Y) ← Prov(X,X1(x),X1(y),x=y;Y1(y),Y1(x),Y) 

                                                               &Prov(X,X1(x);x=y,Y1(x),Y), 
 
C3  Prov(X,x=y,x=y’;Y) ← Prov(X,y=y’;Y), 
 
C4  Prov(X;x=x,Y) ←, 
 
where the variables x and y in X1 and Y1 are explicitly shown.  C2 is the meta-rule to 
show that if a meta-predicate is proved at x=y and for any values not equal to y then 
the meta-predicate is proved for any values of x.  
  It is noted that α in C1 is a variable in the meta-system.  By definition α(x) in the 
head of C1 is a disjunction of positive predicates and α(c) in the first meta-predicate 
in the body is a conjunction of positive predicates.  Moreover α is unified with any 
formula.  This is understood by regarding α as a positive predicate with the following 
auxiliary meta-rules, respectively, corresponding to {α1(x),α2(x)}, α1(x)&α2(x), 
{~α1(x),α2(x)}, and ~α1(x)&α2(x) for α(x).  
 
A1  Prov(X, α(x);Y) ← Prov(X,α1(x);Y)&Prov(X, α2(x);Y),      
 
A2  Prov(X;α(x),Y) ← Prov(X;α1(x),Y)&Prov(X;α2(x),Y),     
 
A3  Prov(X;α(x),Y) ← Prov(X,α1(x);α2(x),Y), 
 
A4  Prov(X,α(x);Y) ← Prov(X,α2(x);α1(x),Y). 
 
Definition 6  The meta-system MC for (T+circumscription) is the set of M0, M1, M2, 
C1, C2, C3, C4 and  the meta-rules of M4 for the clauses in T, and the auxiliary meta-
rules A1, A2, A3, and A4. 

3    Practical Logic Programming for Circumscription 

Example 7  T is {p(a),p(b)}←.  Then p(x)={p(a)&x=a, p(b)&x=b} is proved in MC.  
p(x)←{p(a)&x=a, p(b)&x=b} is obvious.  {p(a)&x=a, p(b)&x=b}←p(x) is shown as 
follows.  Meta-rules are with α(x)≡{p(a)&x=a,p(b)&x=b} and a constant d not in MC, 
 
Prov(X;p(a),p(b),Y) ← ,                                                     
 
Prov(X;Y) ← Prov(X,p(d);α(d),Y).    
 
A success-branch is given as follows, with X1≡p(d)&α(c), and Y1≡{p(c),α(d)}.  The 
root, Prov(□;□), is omitted (so is hereafter). 
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Prov(p(d);α(d)) - Prov(X1;Y1) - Prov(X1,α(a),c=a;p(a),Y1)&Prov(X1;c=a,Y1) - 
- Prov(X1;c=a,Y1) - Prov(p(d),α(c);c=a,c=b,p(c),α(d)) - □. 
      
The second node is given by matching with C1 and is the first meta-predicate in the 
body of C1 since T(p/α,x/c’:X,p(x); α(x),Y) is true.  The third is given by applying C2 
with y=a.  By applying A1 to the first meta-predicate Prov(X1,p(a),c=a;p(a),Y1) and 
Prov(X1,p(b),c=b,c=a;p(a),Y1) are obtained.  Both are true by P1 and by C3 with a=b 
false, respectively, and the fourth node is given.  Similarly the fifth node is obtained 
by applying C2 with y=b.  The last is given by A1 and P1. 
 
  It is noted that {x=a,x=b}←p(x) is also proved in Example 7.  Then the following 
two circumscription meta-rules corresponding to α(x)≡x=a and α(x)≡x=b are used. 
 
Prov(X,p(x);x=a,Y) ← Prov(X,p(x),c=a;p(c),x=a,Y), 
 
Prov(X,p(x);x=b,Y) ← Prov(X,p(x),c'=b;p(c'),x=b,Y). 
 
  Similarly the well-known solution, i.e., for all x and all y {(x=a←p(x)), 
(y=b←p(y))}, is also proved in MC by using the above two circumscription meta-
rules with the following meta-rule for the query and constants, d and d’, not in MC. 
 
Prov(X;Y) ← Prov(X,p(d),p(d’);d=a,d’=b,Y). 
 
Example 8 (The priority and variable predicates)  With A, S, E, p1, and p2 for 
adult, student, employed, abnormal1, and abnormal2, respectively, Let T be 
p1(x)←S(x)&E(x), {E(x),p2(x)}←A(x), A(x)←S(x), S(m)← and let the query be 
~E(m), where m (Mary) is a constant.  The corresponding meta-rules are, 
respectively, 
 
Prov(X,S(x),E(x);p1(x),Y) ←,                                                                                    (4) 
 
Prov(X,A(x);E(x),p2(x),Y) ←,                                                                                   (5) 
 
Prov(X,S(x);A(x),Y) ←,                                                                                             (6) 
 
Prov(X;S(m),Y) ←,                                                                                                     (7) 
 
Prov(X;Y) ← Prov(X,E(m);Y).                                                                                   (8) 

 
  The circumscription meta-rules for p1 and p2 are, respectively, 
 
Prov(X,p1(x);α1(x),Y) 
 ←Prov(X,p1(x),α1(c);p1(c),α1(x),Y)&Prov(X,p1(x),S(c’),E(c’);α1(c’),α1(x),Y),   (9) 
 
Prov(X,p2(x);α2(x),Y)  
←Prov(X,p2(x),α2(d);p2(d),α2(x),Y)&Prov(X,p2(x),A(d’);E(d’),α2(d’),α2(x),Y).(10) 
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It is noted that the second meta-predicate in the body of (9) is T(p1/α1,x/c’:X,p1(x); 
α1(x),Y) since from (5) to (8) the meta-predicates are not changed and are true.  
Therefore these meta-predicates in T(p/α,x/c’:X,p(x); α(x),Y) are dropped.  Similarly 
(10) is obtained.  The first and the second nodes of a success-branch are given by 
making α1(x) empty for a value x’ in (9),  
 
Prov(E(m); □) -  
- Prov(E(m);p1(x’))&Prov(p1(x’),α1(c);p1(c))&Prov(p1(x’),S(c’),E(c’);α1(c’)) -. 
 
The second node is given by P3.  The first meta-predicate of the second node is 
expanded into Prov(E(m);S(x’),p1(x’))&Prov(E(m);E(x’),p1(x’)) by matching with 
(4) and by applying P4 .  From (7) the first meta-predicate is removed with x’=m by 
P1, and the second meta-predicate is also removed by P1.  Therefore the first meta-
predicate in the second node is removed.  The third and the last nodes are  
 
- Prov(p1(m),α1(c);p1(c))&Prov(p1(m),S(c’),E(c’);α1(c’)) - □. 
 
The first meta-predicate in the third node is matched with (4) by unifying x and α1(c) 
with c and S(c)&E(c), respectively, and is removed.  By using the auxiliary meta-rule 
A2, it is shown that the second meta-predicate is also removed by P1 and the empty 
node is obtained.  The condition that α1(m) is false is satisfied by requiring that 
S(x)&E(x) is false, i.e., there are no students employed.  It is easily shown that the 
empty node is not obtained by making α2(m) empty.  Therefore the priority of p1 is 
higher than that of p2 and it is required that S or E is the variable predicate. 
 
  Suppose that for another student k (Ken), E(k) is another plausible query.  Adding 
 
Prov(X;S(k),Y) ←,                                                                                                     (7’) 
 
require that Prov(□;E(k)) is proved.  A success-branch is by making α2(x) in (10) 
empty at x=x’, 
 
Prov(□;E(k)) - 
- Prov(□;E(k),p2(x’))&Prov(p2(x’),α2(d);p2(d))&Prov(p2(x’),A(d’);E(d’),α2(d’)) -. 
 
The first meta-predicate of the second node is replaced by Prov(□;A(k),E(k),p2(k)) by 
matching with (5) for x’=k and from P4.  From (6) with P4 and (7’) with P1 the first 
meta-predicate is removed.  The third and the last nodes are  
 
- Prov(p2(k),α2(d);p2(d))&Prov(p2(k),A(d’);E(d’),α2(d’)) - □. 
 
The first meta-predicate of the third node is removed by applying A4 with 
α2(d)=~α21(d)&α22(d) and by matching with (5) by unifying α21(d) and α22(d) with 
E(d) and A(d), respectively.  The second meta-predicate is also removed by applying 
A2 and A3.  The priority of p2 is higher than that of p1 and the variable predicate is A 
or E.  The condition that α2(k) is false is satisfied by requiring that ~E(k)&A(k) is 
false.  It is easily shown that p1(k) and p2(m) are true, i.e., Ken is abnormal as a 
student and so is Mary as an adult.  In this case the condition that S(x)&E(x) is false is 
not correct since α1(k) is true.  An alternative is that α1(x)≡S(x)&E(x)≡x=k, i.e., only 
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Ken is abnormal as a student.  Similarly α2(x)≡~E(x)&A(x)≡x=m, i.e., only Mary is 
abnormal as an adult. 
 
 Similarly the following Example 9 is proved in MC.  Let Q(x) be a conjunction of 
positive or negative predicates except p and if Q(x) includes p then p is positive with 
functions. 
 
Example 9  Let T be p(x)←Q(x), or {p(x),p(a)}←Q(x), or {p(x),p(f(x))}←.  Then 
p(x)=Q(x), or p(x)={Q(x)&~p(a), p(a)&x=a}, or p(x)=p(x)&{p(f(-2,x)),p(f(2,x))}, 
respectively, is proved in MC. 
  
  As seen in Examples 8 and 9, to prove ~p(t) for a given term t, a sufficient condition 
is that T made p(t) false is required.  Generally this form of circumscription is 
obtained by using generalized variable-predicates defined below.       
  
Definition 10    Let  S be a subset of the Herbrand universe of T.  Then T([p/□,S]) is 
defined by the set of clauses of the form Z←W in T for which W doesn’t include p(t) 
and Z includes p(t) and from which  p(t) is removed  for t in S.  Generalized variable- 
predicates are defined such that T([p/□,S]) is satisfied when T([p/□,S]) is consistent 
with T.  
 
Theorem 11  If (T+T([p/□,S])) is consistent then ~p(t) for t in S  is proved with the 
generalized variable-predicates.      
 
Proof:  Let α(x) be false for x in S, and be p(x) for x not in S.  Then p(x)←α(x) is 
proved and T(p/α) is proved assuming T([p/□,S]). 
 
  It is noted that for c not in T, ~p(c) is not proved since α is a model of p, t is in the 
Herbrand universe of T.  It is also noted that ~p is not proved from T([p/□,S]), but is 
proved by circumscription with generalized variable-predicates.  Example 7 is also 
shown by Theorem 11.  Because let S be the set of x such that x≠a,b.  Since 
T([p/□,S]) is empty and consistent with T, without generalized variable-predicates, 
α(x) is given by the one which is false for x≠a,b and is p(a) for x=a and p(b) for x=b.   
  Usually the consistency check is undecidable.  By encapsulating the consistency 
check as an oracle the logic programming with oracles is given in the following. 
 
Definition 12  For a term t, O(p(t):S) is the oracle answering true if  T([p/□,S’]) is 
consistent with T and false otherwise, where S’ is the sum of S and t.  The extended 
predicate Prov(X;Y:π,Σ) is defined from Prov(X;Y) by adding two variables π and Σ 
for predicates and subsets of the region of x, respectively.  The oracle and 
Prov(X;Y:π,Σ) satisfy the following meta-rules O1, O2, and G for the initial goal 
clause.  
 
O1  Prov(X,r(x);Y:r(x),Σ) ← Prov(X,r(x);O(r(x):Σ),Y:r(x),Σ), 
 
O2  Prov(X;Y:r(x),Σ) ← Prov(X;Y:π,Σ’), 
 
G                                ← Prov(□;□:π,Σ), 
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where r is the variable for predicates and Σ’ is defined by adding x to Σ. 
 
 O2 is for preserving the information regarding Σ obtained in the proof.  The 
following Theorem 13 is immediately obtained. 
 
Theorem 13  Let Mo be the meta-system M for T with O1 and O2.  If ~p(t)  is proved 
by using C1 once then ~p(t) is proved in Mo, and Mo is decidable regarding 
circumscription.  The converse is obtained for MC with generalized variable-
predicates. 
 
Example 14  Let T be p(a)← and p(x)←p(f(x)).  Suppose that there is not an n such 
that a=f(n,b).  Let  S be the set of (b, f(b), ..., f(n,b), ...).  Then T([p/□,S]) is empty.  
Therefore ~p(b) is proved without generalized variable-predicates.  In Mo there is the 
success-branch due to the oracle. 
 
Prov(p(b);□) - Prov(p(b);O(p(b):S)) - □. 
 
  It is noted that the oracle in Definition 12 is for queries with the existential quantifier.  
For the query, α(x)≡f(n(x),x)=a, where n(x) is the Skolem’s function for n, the query 
includes the universal quantifier regarding x.  In this case the oracle requires the 
information about the region in which α is false and is more complicated than the one 
give above.  
 
Definition 15  Let O(X1,p;Y1:Sp) is the oracle answering true if T([p/□,Sp]) is 
consistent with T and false otherwise, where Sp is the complement of the region in 
which Y1(x)←p(x)&X1(x) is proved.  The oracle satisfies  
 
Ou  Prov(X,X1(x),r(x);Y1(x),Y:π,Σ) ← Prov(X;O(X1,r;Y1:Sr),Y:π,Σ), 
 
which is proved by Theorem 11.  By using Ou, with α(x)≡f(n(x),x)=a, α(x)←p(x) is 
proved since there is a success-branch such that  
 
Prov(p(c);α(c):π,Σ) - Prov(□;O(p;α:Sp):π,Σ) - □, 
 
where Sp is x such that f(n,x)≠a for all n.  The empty node is given by the oracle since 
T([p/□,Sp]) is consistent with T. 
 
  As is easily seen when T is {p(a),p(b)}←, ~p(a) or ~p(b) can be inferred with 
generalized variable-predicates.  Therefore there is a problem in the definition of 
generalized variable-predicates.  To remove the problem one way is to require that 
T([p/□,S]) is empty.  However it is well known that meaningful results aren’t given 
under the condition.  Another way is to restrict the inference regarding ~p(a) or ~p(b) 
as follows.   
 
Definition 16  For a generalized variable-predicate p(t) let φ be a disjunction of 
positive or negative predicates.  Consider the restriction that ~p(t) can’t be inferred if 
there is a clause φ such that {p(t),φ} is proved but φ is not proved in T.  ‘Semi-
general’ and ‘restricted’ variable-predicates are the cases where φ is the disjunction 
of positive p and φ is any disjunction not including ~p(t), respectively. 
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  It is easily shown that for the semi-general case the proof of ~p doesn’t depend on S 
but depends on another circumscribed predicate q is used in the proof.  For the 
restricted case it is also shown that the necessary and sufficient condition to prove 
~p(t) is that there are no clauses in T including p(t).  An easy way to implement the 
above restrictions is the use of oracles answering under the restrictions.  Then the 
oracle for the semi-general case is the most undecidable among the three. 

4    Conclusion 
A goal-oriented prover for solving circumscription problems was presented.  A 
feature of the prover is that the priority and the variable predicates are suggested so as 
to prove the intended results.  Based on the prover, formulae were given which satisfy 
circumscription formulae without variable predicates for the set of typical clauses of 
predicates with functions.  Practically circumscription is applied to prove the negation 
of a predicate.  For the formulae given above to be false, the condition must be 
satisfied that T made p false is consistent with T.  Variable predicates are generalized 
so as to prove T made p false.  By the generalization it was shown that 
circumscription problems are practically solved by giving a model to show the 
consistency for the cases where predicates include functions for which the problems 
become undecidable.  Generally consistency problems are undecidable.  By 
encapsulating the consistency check as an oracle a decidable prover was presented for 
queries without universal quantifiers.  The oracle with universal quantifiers was also 
given.  This prover is practical in the meaning that the consistency is proved by giving 
a model of T.  The restrictions, semi-general and restricted, were considered for 
generalized variable-predicates not to infer undesirable predicates.  These restrictions 
are additive and more unified formulations are desired. 
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